If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35p^2+165p-50=0
a = 35; b = 165; c = -50;
Δ = b2-4ac
Δ = 1652-4·35·(-50)
Δ = 34225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{34225}=185$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(165)-185}{2*35}=\frac{-350}{70} =-5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(165)+185}{2*35}=\frac{20}{70} =2/7 $
| 3(x+5)=2(x+5) | | 4=6.2+z | | 26+x=102 | | 1/3(x-9)+1/4(12x-8)=10 | | -4-x+3=12/x-5 | | 7(4x-1)-2=48 | | (h+6)^2=196 | | 1.19388*10^-47=(10x)^10*(6x)^6 | | 12252.5=377(l)(5) | | 4(2x+1)=5x+3x+9x | | 12252.5=377l5 | | 1/3(21-3a)=6-2 | | 10.00x+8.00(20-x)=8.50(20) | | 5x-7=9x-3 | | -9-x=16 | | 3x+14-2x=3-3x-3+3x | | 8p/4+6=8 | | 5x+3.4=9.2, | | 6=10/x+2 | | 8x3x=11x | | 9.00x+7.00(30-x)=7.50(30) | | 3y-2(5y-7)=9y+6 | | 4x+6+9=180 | | 3x+1=3(1x-1)+4 | | 5x+3(2x-4)=21 | | 4x-3/15-2x-6/5=-x+3/3 | | -22p=-p-12 | | 2x10=20+4x | | 33=-11(c-6( | | (1/2)w-3/4=(2/3)w+2 | | (x+3)-1=0 | | 8(x-9)=6(2x-12) |